    # A body starts from rest and acquires a velocity of 10m/s in 2s.find the acceleration  Prev

Question 7 Exercise 2C

Next Given:

u=10m/s; a=5m/s^2 ; t=5s; s=?

distance travelled, s = ut + ½ at2

= 10 x 5 + ½ (5) (5)2

= 50 + 62.5

= 112.5m

Video transcript

hello everyone welcome to lido learning i am good preet your science tutor today's question is a body starts with an initial velocity of 10 meter per second and the acceleration is 5 meter per second square find the distance covered by it in 5 seconds so in this question you have to calculate the distance covered by the body in 5 second so let's start our answer given for this question is initial velocity that is u is equals to 10 meter per second acceleration is given as 5 meter per second square and time is given that is 5 seconds and you have to calculate s the value of s can be calculated by the second equation of motion that is s is equals to u t plus half a t square so let us put the values u is given as 10 time is given as 5 half a is 5 and t is 5 square that is on solving you will get this 50 and this when we solve we will get as 62.5 this is 11 112.5 meter this is your answer for more such videos please subscribe leader learning and for any doubts drop a comment thank you  A body starts from rest and requires a velocity 10 m s 1 in 2s.Find the acceleration.

Open in App

Suggest Corrections

1

A body starts from rest and acquires a velocity 10 m s-1 in 2 s. Find the acceleration.

Here, final velocity = 10 m/s

Initial velocity = 0 m/s

Time taken = 2s

Acceleration = (Final Velocity - Initial Velocity)/time

= (10/2) ms-2

= 5 ms-2

Concept: Rate of Change of Velocity

Is there an error in this question or solution?

#### Page 2

A car starting from rest acquires a velocity 180m s-1 in 0.05 h. Find the acceleration.

Here, final velocity = 180 m/s

Initial velocity = 0 m/s

Time taken = 0.05 h or 180 s

Acceleration = (Final Velocity - Initial Velocity)/time

= (180-0)/180 m s-2

= 1 m s-2

Concept: Rate of Change of Velocity

Is there an error in this question or solution? 