Which disorder has traits that are found primarily under neuroticism in the Five Factor Model of personality?

The traits for this disorder are found primarily underneuroticism in the Five- Factor Model of personality.Answers:Selected Answer: c.borderline personality disordera.avoidant personality disorderb.dependent personality disorderc.borderlinepersonality disorderd.antisocial personality disorder

Neuroticism is defined as a tendency to experience negative affects (Costa & McCrae, 1992), and, not surprisingly, it is consistently associated with lower levels of relationship satisfaction on average (eg, Karney & Bradbury, 1997;

From: Advances in Experimental Social Psychology, 2016

  1. Lahey, B. B. Public health significance of neuroticism. Am. Psychol. 64, 241–256. https://doi.org/10.1037/a0015309 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Costa, P. T. & McCrae, R. R. Four ways five factors are different. Pers. Individ. Dif. 13, 653–665 (1992).

    Article  Google Scholar 

  3. Goldberg, L. R. The structure of phenotypic personality traits. Am. Psychol. 48, 26–34. https://doi.org/10.1037//0003-066x.48.1.26 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Digman, J. M. Personality structure: Emergence of the five-factor model. Annu. Rev. Psychol. 41, 417–440 (1990).

    Article  Google Scholar 

  5. Kolla, N. J., Eisenberg, H. & Links, P. S. Epidemiology, risk factors, and psychopharmacological management of suicidal behavior in borderline personality disorder. Arch. Suicide Res. 12, 1–19. https://doi.org/10.1080/13811110701542010 (2008).

    Article  PubMed  Google Scholar 

  6. Saulsman, L. M. & Page, A. C. The five-factor model and personality disorder empirical literature: A meta-analytic review. Clin. Psychol. Rev. 23, 1055–1085. https://doi.org/10.1016/j.cpr.2002.09.001 (2004).

    Article  PubMed  Google Scholar 

  7. Samuel, D. B. & Widiger, T. A. A meta-analytic review of the relationships between the five-factor model and DSM-IV-TR personality disorders: A facet level analysis. Clin. Psychol. Rev. 28, 1326–1342. https://doi.org/10.1016/j.cpr.2008.07.002 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wright, A. G., Hopwood, C. J. & Zanarini, M. C. Associations between changes in normal personality traits and borderline personality disorder symptoms over 16 years. Personality Disorders 6, 1–11. https://doi.org/10.1037/per0000092 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Lynam, D. R. & Widiger, T. A. Using the five-factor model to represent the DSM-IV personality disorders: An expert consensus approach. J. Abnorm. Psychol. 110, 401–412. https://doi.org/10.1037//0021-843x.110.3.401 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Pulkkinen, L. In Aggression in Global Perspective 104–144 (Pergamon Press, 1983).

    Book  Google Scholar 

  11. Zanarini, M. C. et al. Axis II comorbidity of borderline personality disorder. Compr. Psychiatry 39, 296–302. https://doi.org/10.1016/s0010-440x(98)90038-4 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Brooner, R. K., Herbst, J. H., Schmidt, C. W., Bigelow, G. E. & Costa, P. T. Jr. Antisocial personality disorder among drug abusers. Relations to other personality diagnoses and the five-factor model of personality. J. Nervous Mental Disease. 181, 313–319 (1993).

    Article  CAS  Google Scholar 

  13. Di Marzo, V. Targeting the endocannabinoid system: To enhance or reduce?. Nat. Rev. Drug Discov. 7, 438–455. https://doi.org/10.1038/nrd2553 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Marzo, V. D., Bifulco, M. & Petrocellis, L. D. The endocannabinoid system and its therapeutic exploitation. Nat. Rev. Drug Discov. 3, 771. https://doi.org/10.1038/nrd1495 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Hill, M. N. et al. Regional alterations in the endocannabinoid system in an animal model of depression: Effects of concurrent antidepressant treatment. J. Neurochem. 106, 2322–2336. https://doi.org/10.1111/j.1471-4159.2008.05567.x (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stopponi, S. et al. Inhibition of fatty acid amide hydrolase in the central amygdala alleviates co-morbid expression of innate anxiety and excessive alcohol intake. Addict. Biol. 23, 1223–1232. https://doi.org/10.1111/adb.12573 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Griebel, G. et al. The selective reversible FAAH inhibitor, SSR411298, restores the development of maladaptive behaviors to acute and chronic stress in rodents. Sci. Rep. 8, 2416. https://doi.org/10.1038/s41598-018-20895-z (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ueda, N., Puffenbarger, R. A., Yamamoto, S. & Deutsch, D. G. The fatty acid amide hydrolase (FAAH). Chem. Phys. Lipids 108, 107–121. https://doi.org/10.1016/s0009-3084(00)00190-0 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Romero, J., Hillard, C. J., Calero, M. & Rabano, A. Fatty acid amide hydrolase localization in the human central nervous system: An immunohistochemical study. Brain Res. Mol. Brain Res. 100, 85–93. https://doi.org/10.1016/s0169-328x(02)00167-5 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Egertova, M., Giang, D. K., Cravatt, B. F. & Elphick, M. R. A new perspective on cannabinoid signalling: Complementary localization of fatty acid amide hydrolase and the CB1 receptor in rat brain. Proc. Biol. Sci. 265, 2081–2085. https://doi.org/10.1098/rspb.1998.0543 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Thomas, E. A., Cravatt, B. F., Danielson, P. E., Gilula, N. B. & Sutcliffe, J. G. Fatty acid amide hydrolase, the degradative enzyme for anandamide and oleamide, has selective distribution in neurons within the rat central nervous system. J. Neurosci. Res. 50, 1047–1052. https://doi.org/10.1002/(SICI)1097-4547(19971215)50:6%3c1047::AID-JNR16%3e3.0.CO;2-1 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Vinod, K. Y. et al. Selective alterations of the CB1 receptors and the fatty acid amide hydrolase in the ventral striatum of alcoholics and suicides. J. Psychiatr. Res. 44, 591–597. https://doi.org/10.1016/j.jpsychires.2009.11.013 (2010).

    Article  PubMed  Google Scholar 

  23. Kolla, N. J. et al. Elevated fatty acid amide hydrolase in the prefrontal cortex of borderline personality disorder: A [(11)C]CURB positron emission tomography study. Neuropsychopharmacology 45, 1834–1841. https://doi.org/10.1038/s41386-020-0731-y (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kolla, N. J. et al. Lower amygdala fatty acid amide hydrolase in violent offenders with antisocial personality disorder: An [(11)C]CURB positron emission tomography study. Transl. Psychiatry 11, 57. https://doi.org/10.1038/s41398-020-01144-2 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Spagnolo, P. A. et al. FAAH gene variation moderates stress response and symptom severity in patients with posttraumatic stress disorder and comorbid alcohol dependence. Alcohol. Clin. Exp. Res. 40, 2426–2434. https://doi.org/10.1111/acer.13210 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bjornebekk, A. et al. Neuronal correlates of the five factor model (FFM) of human personality: Multimodal imaging in a large healthy sample. Neuroimage 65, 194–208. https://doi.org/10.1016/j.neuroimage.2012.10.009 (2013).

    Article  PubMed  Google Scholar 

  27. Schultz, C. C. et al. High levels of neuroticism are associated with decreased cortical folding of the dorsolateral prefrontal cortex. Eur. Arch. Psychiatry Clin. Neurosci. 267, 579–584. https://doi.org/10.1007/s00406-017-0795-9 (2017).

    Article  PubMed  Google Scholar 

  28. Owens, M. M. et al. Cortical morphometry of the five-factor model of personality: Findings from the Human Connectome Project full sample. Social Cognit. Affect. Neurosci. 14, 381–395. https://doi.org/10.1093/scan/nsz017 (2019).

    Article  Google Scholar 

  29. Kapogiannis, D., Sutin, A., Davatzikos, C., Costa, P. Jr. & Resnick, S. The five factors of personality and regional cortical variability in the Baltimore longitudinal study of aging. Hum. Brain Mapp. 34, 2829–2840. https://doi.org/10.1002/hbm.22108 (2013).

    Article  PubMed  Google Scholar 

  30. Wright, C. I. et al. Neuroanatomical correlates of extraversion and neuroticism. Cereb. Cortex 16, 1809–1819. https://doi.org/10.1093/cercor/bhj118 (2006).

    Article  PubMed  Google Scholar 

  31. Lu, F. et al. Relationship between personality and gray matter volume in healthy young adults: A voxel-based morphometric study. PLoS ONE 9, e88763. https://doi.org/10.1371/journal.pone.0088763 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Trull, T. J. DSM-III-R personality disorders and the five-factor model of personality: An empirical comparison. J. Abnorm. Psychol. 101, 553–560. https://doi.org/10.1037//0021-843x.101.3.553 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Juhasz, G. et al. CNR1 gene is associated with high neuroticism and low agreeableness and interacts with recent negative life events to predict current depressive symptoms. Neuropsychopharmacology 34, 2019–2027. https://doi.org/10.1038/npp.2009.19 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Wei, D. et al. Endocannabinoid signaling mediates oxytocin-driven social reward. Proc. Natl. Acad. Sci. USA 112, 14084–14089. https://doi.org/10.1073/pnas.1509795112 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Green, D. G. J. et al. Fatty acid amide hydrolase binding is inversely correlated with amygdalar functional connectivity: A combined positron emission tomography and magnetic resonance imaging study in healthy individuals. J. Psychiatry Neurosci. JPN 46, E238–E246. https://doi.org/10.1503/jpn.200010 (2021).

    Article  PubMed  Google Scholar 

  36. Rafiei, D. & Kolla, N. J. Elevated brain fatty acid amide hydrolase induces depressive-like phenotypes in rodent models: A review. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22031047 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Fowler, C. J. The potential of inhibitors of endocannabinoid metabolism as anxiolytic and antidepressive drugs—A practical view. Eur. Neuropsychopharmacol. 25, 749–762. https://doi.org/10.1016/j.euroneuro.2015.02.005 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Moreira, F. A. et al. Antiaversive effects of cannabinoids: Is the periaqueductal gray involved?. Neural. Plast. 2009, 625469. https://doi.org/10.1155/2009/625469 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Rubino, T. et al. CB1 receptor stimulation in specific brain areas differently modulate anxiety-related behaviour. Neuropharmacology 54, 151–160. https://doi.org/10.1016/j.neuropharm.2007.06.024 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Carnevali, L. et al. Pharmacological inhibition of FAAH activity in rodents: A promising pharmacological approach for psychological-cardiac comorbidity?. Neurosci. Biobehav. Rev. 74, 444–452. https://doi.org/10.1016/j.neubiorev.2016.04.013 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Haller, J., Goldberg, S. R., Pelczer, K. G., Aliczki, M. & Panlilio, L. V. The effects of anandamide signaling enhanced by the FAAH inhibitor URB597 on coping styles in rats. Psychopharmacology 230, 353–362. https://doi.org/10.1007/s00213-013-3161-2 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Gorzalka, B. B., Hill, M. N. & Hillard, C. J. Regulation of endocannabinoid signaling by stress: Implications for stress-related affective disorders. Neurosci. Biobehav. Rev. 32, 1152–1160. https://doi.org/10.1016/j.neubiorev.2008.03.004 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Davidson, R. J. Anxiety and affective style: Role of prefrontal cortex and amygdala. Biol. Psychiat. 51, 68–80. https://doi.org/10.1016/s0006-3223(01)01328-2 (2002).

    Article  PubMed  Google Scholar 

  44. Soloff, P. H., Chiappetta, L., Mason, N. S., Becker, C. & Price, J. C. Effects of serotonin-2A receptor binding and gender on personality traits and suicidal behavior in borderline personality disorder. Psychiatry Res. https://doi.org/10.1016/j.pscychresns.2014.03.008 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Frokjaer, V. G. et al. Frontolimbic serotonin 2A receptor binding in healthy subjects is associated with personality risk factors for affective disorder. Biol. Psychiat. 63, 569–576. https://doi.org/10.1016/j.biopsych.2007.07.009 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Tauscher, J. et al. Inverse relationship between serotonin 5-HT(1A) receptor binding and anxiety: A [(11)C]WAY-100635 PET investigation in healthy volunteers. Am. J. Psychiatry 158, 1326–1328. https://doi.org/10.1176/appi.ajp.158.8.1326 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Hirvonen, J., Tuominen, L., Nagren, K. & Hietala, J. Neuroticism and serotonin 5-HT1A receptors in healthy subjects. Psychiatry Res. 234, 1–6. https://doi.org/10.1016/j.pscychresns.2015.04.007 (2015).

    Article  PubMed  Google Scholar 

  48. Bambico, F. R. et al. Genetic deletion of fatty acid amide hydrolase alters emotional behavior and serotonergic transmission in the dorsal raphe, prefrontal cortex, and hippocampus. Neuropsychopharmacology 35, 2083–2100. https://doi.org/10.1038/npp.2010.80 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cassano, T. et al. Evaluation of the emotional phenotype and serotonergic neurotransmission of fatty acid amide hydrolase-deficient mice. Psychopharmacology 214, 465–476. https://doi.org/10.1007/s00213-010-2051-0 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Bambico, F. R., Duranti, A., Nobrega, J. N. & Gobbi, G. The fatty acid amide hydrolase inhibitor URB597 modulates serotonin-dependent emotional behaviour, and serotonin1A and serotonin2A/C activity in the hippocampus. Eur. Neuropsychopharmacol. 26, 578–590. https://doi.org/10.1016/j.euroneuro.2015.12.027 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Balleine, B. W., Delgado, M. R. & Hikosaka, O. The role of the dorsal striatum in reward and decision-making. J. Neurosci. 27, 8161–8165. https://doi.org/10.1523/Jneurosci.1554-07.2007 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dom, G., De Wilde, B., Hulstijn, W., van den Brink, W. & Sabbe, B. Decision-making deficits in alcohol-dependent patients with and without comorbid personality disorder. Alcohol. Clin. Exp. Res. 30, 1670–1677. https://doi.org/10.1111/j.1530-0277.2006.00202.x (2006).

    Article  PubMed  Google Scholar 

  53. Denburg, N. L. et al. Poor decision making among older adults is related to elevated levels of neuroticism. Ann. Behav. Med. 37, 164–172. https://doi.org/10.1007/s12160-009-9094-7 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Servaas, M. N. et al. Neuroticism and the brain: A quantitative meta-analysis of neuroimaging studies investigating emotion processing. Neurosci. Biobehav. Rev. 37, 1518–1529. https://doi.org/10.1016/j.neubiorev.2013.05.005 (2013).

    Article  PubMed  Google Scholar 

  55. Do, J., Kim, J. I., Bakes, J., Lee, K. & Kaang, B. K. Functional roles of neurotransmitters and neuromodulators in the dorsal striatum. Learn Mem. 20, 21–28. https://doi.org/10.1101/lm.025015.111 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Hilario, M. R., Clouse, E., Yin, H. H. & Costa, R. M. Endocannabinoid signaling is critical for habit formation. Front. Integr. Neurosci. 1, 6. https://doi.org/10.3389/neuro.07.006.2007 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Aguilera-Portillo, G. et al. The Pharmacological inhibition of fatty acid amide hydrolase prevents excitotoxic damage in the rat striatum: Possible involvement of CB1 receptors regulation. Mol. Neurobiol. 56, 844–856. https://doi.org/10.1007/s12035-018-1129-2 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Schmidt, M. E. et al. The effects of inhibition of fatty acid amide hydrolase (FAAH) by JNJ-42165279 in social anxiety disorder: A double-blind, randomized, placebo-controlled proof-of-concept study. Neuropsychopharmacology https://doi.org/10.1038/s41386-020-00888-1 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hollander, E. et al. Divalproex in the treatment of impulsive aggression: Efficacy in cluster B personality disorders. Neuropsychopharmacology 28, 1186–1197. https://doi.org/10.1038/sj.npp.1300153 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Jacob, C. P. et al. Cluster B personality disorders are associated with allelic variation of monoamine oxidase A activity. Neuropsychopharmacology 30, 1711–1718. https://doi.org/10.1038/sj.npp.1300737 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Hillard, C. J. Circulating endocannabinoids: From whence do they come and where are they going?. Neuropsychopharmacology 43, 155–172. https://doi.org/10.1038/npp.2017.130 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Hatzitaskos, P., Soldatos, C. R., Kokkevi, A. & Stefanis, C. N. Substance abuse patterns and their association with psychopathology and type of hostility in male patients with borderline and antisocial personality disorder. Compr. Psychiatry 40, 278–282. https://doi.org/10.1016/s0010-440x(99)90128-1 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. First, M. B., Gibbon, M., Spitzer, R. L., Williams, J. B. W. & Benjamin, L. S. Structured Clinical Interview for DSM-IV Axis II Personality Disorders (SCID-II) (American Psychiatric Press, Inc., 1997).

    Google Scholar 

  64. First, M. B., Spitzer, R. L., Gibbon, M. & Williams, J. B. W. Structured Clinical Interview for DSM-IV-TR Axis I Disorders, Research Version, Patient Edition (SCID-I/P), Version 2 (Biometrics Research, New York State Psychiatric Institute, 2002).

    Google Scholar 

  65. Rusjan, P. M. et al. Mapping human brain fatty acid amide hydrolase activity with PET. J. Cerebral Blood Flow Metab. 33, 407–414. https://doi.org/10.1038/jcbfm.2012.180 (2013).

    Article  CAS  Google Scholar 

  66. Boileau, I. et al. Whole-body radiation dosimetry of 11C-carbonyl-URB694: A PET tracer for fatty acid amide hydrolase. J. Nucl. Med. 55, 1993–1997. https://doi.org/10.2967/jnumed.114.146464 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Mizrahi, R. et al. Translocator protein (18 kDa) polymorphism (rs6971) explains in-vivo brain binding affinity of the PET radioligand [(18)F]-FEPPA. J. Cereb. Blood Flow Metab. 32, 968–972. https://doi.org/10.1038/jcbfm.2012.46 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rusjan, P. et al. An automated method for the extraction of regional data from PET images. Psychiatry Res. 147, 79–89. https://doi.org/10.1016/j.pscychresns.2006.01.011 (2006).

    Article  PubMed  Google Scholar 

  69. Boileau, I. et al. The fatty acid amide hydrolase C385A variant affects brain binding of the positron emission tomography tracer [11C]CURB. J. Cereb. Blood Flow Metab. 35, 1237–1240. https://doi.org/10.1038/jcbfm.2015.119 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Costa, P. T. Jr. & McCrae, R. R. Domains and facets: Hierarchical personality assessment using the revised NEO personality inventory. J. Pers. Assess 64, 21–50. https://doi.org/10.1207/s15327752jpa6401_2 (1995).

    Article  PubMed  Google Scholar 

  71. Costa, P. T. Jr. & McCrae, R. R. Revised NEO Personality Inventory (NEO-PI-R) and NEO Five-Factor Inventory (NEO-FFI) (Psychological Assessment Resources, 1992).

    Google Scholar 


Page 2

Scientific Reports (Sci Rep) ISSN 2045-2322 (online)